📌 오늘의 국제 원자력 동향 2025년 12월 23일(화)
- 중국이 HTGR(고온가스로) 산업 연합(60여개 기관)을 출범해 설계·연료·제작·건설·O&M까지 밸류체인을 묶고, 공정열·난방·수소 등 비전력 수요를 겨냥한 ‘원자력+’ 통합에너지 상용화를 가속하는 흐름이 확인됨
- 일본 니가타현 의회가 가시와자키-가리와 원전 재가동을 지지하는 지사 신임결의를 가결하면서, 후쿠시마 이후 장기 정지 대형 원전의 재가동 절차가 최종 단계로 진입했으며, 향후 지역 수용성과 안전 신뢰 확보가 성패를 좌우할 전망
- 러시아 Rosatom이 HTGR 연료를 1600~1700℃ 수준의 극한 조건에서 장시간 시험했다고 발표해, 고온 공정열·수소 생산형 원자로 개발에서 연료 성능·안전여유도 데이터 축적 경쟁이 본격화되고 있음을 시사함
- 인도의 SHANTI 원자력 법이 대통령 재가로 입법 절차를 완료해 민간 참여 확대, 규제기관 법정 지위, 책임·배상 체계(graded liability) 정비가 추진되며, 2047년 100GWe 확대 목표 달성을 위한 투자·규제 패키지 전환이 가시화됨
영구 처분은 어떻게 하나요?
- 사용후핵연료 영구처분은 지하처분, 해양처분, 우주처분 등을 생각할 수 있으나 현실적으로 가장 유력한 방식은 지하처분입니다. 지하처분에는 약 500~1000m 깊이의 심층부 안정된 지층까지 갱도를 굴착하고 그 지층위에 처분공을 만들어 묻는 심층처분 방법과 지표에서 3~5 km 의 시추공을 뚫어 여러 개의 사용후핵연료를 수직으로 묻는 심부시추공 방식이 있습니다. 심층처분 방법은 이미 기술이 검증되어 핀란드에서 적용하고 있고 심부시추공 방식은 현재 기술 개발이 진행 중입니다.
- 자세히 알아봅시다.
- 심층처분 방식
- - 처분 터널 건설: 지하 500~1000 m 에 지하수 생성 가능성이 적고 안정된 지반을 찾아 수평으로 터널을 건설하고 지표에서 터널까지는 완만한 경사의 터널을 뚫어 연결
- - 사용후핵연료 처분용기내 밀봉: 부식과 압력에 견딜 수 있도록 제작된 견고한 처분용기내에 사용후핵연료를 장입하여 밀봉
- - 처분공 굴착 및 처분용기 매립: 처분용기를 매립할 처분공을 적절한 간격으로 굴착하고 처분용기를 삽입한 후 충전재를 주위에 채우고 매립. 이렇게 동굴내에 매립된 사용후핵연료는 재활용 기술이 발전할 경우 회수가 가능
- 심부시추공 방식
- - 심부시추공 굴착: 직경이 50 cm 정도되는 시추공을 지하 3~5 km까지 굴착. 현재까지 개발된 석유 시추 기술을 바탕으로 직경을 충분히 넓게 확보하여 시추공을 굴착하는 기술이 미국 Sandia National Lab을 중심으로 개발 중
- - 사용후핵연료집합체 장입: 하단 1 km 정도에 까지 사용후핵연료집합체를 삽입을 용기를 장입하여 적체. 용기의 높이를 5 m 로 하면 약 200개의 1개 시추공당 사용후핵연료 200 개 장입 가능. 시추공 상층부는 매립; 매립된 사용후핵연료는 재활용 측면에서 회수 가능성을 포기
- 지하 처분장 설계 특이점
- - 저장용기 건전성 보장: 사용후핵연료에서는 발열이 지속되므로 처분공 주위로 열확산과 이로 인한 처분장 터널 내 온도 상승에 대한 평가를 정확하게 하여 수증기가 발생하지 않도록 온도가 100 도 이하가 되게 설계하고, 용기의 건전성이 장기간 유지될 수 있는지 평가하여 하여야 하는 점이 애로 사항입니다.
- - 지하 연구시설 운영 필요: 이러한 설계와 평가 자료를 확보하기 위해 영구처분장 설계전 지하연구시설을 건설하고 실측자료를 입수하여 분석하는 것이 필수적입니다.
작성자: 한국원자력학회 소통위원회